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Fourth RSC Artificial Intelligence in Chemistry 
27th – 28th September 2021 

A report by Dr Wendy A Warr, https://www.warr.com/ 

Introduction 
The (“virtual”) symposium was organised by the Royal Society of Chemistry’s Biological and 

Medicinal Chemistry Sector (RSC BMCS) and the Royal Society of Chemistry’s Chemical Information 

and Computer Applications Group (RSC CICAG). 

AI for molecular design, past, present and future 
Ola Engkvist, AstraZeneca, Gothenburg, Sweden 

AI-based drug design can reduce the time to deliver a clinical candidate, by helping chemists select 

the most efficient synthetic route (increasing speed), and making information-rich compounds in 

each design, analyse, make, test (DMTA) cycle (maximising learning). This could not have been done 

five years ago but increased computational power, advances in neural network (NN) algorithms, and 

the availability of open‐source software have now made it possible. 

We can take advantage of progress in natural language processing (NLP) by representing molecules 

as SMILES. NLP can then be used in synthesis prediction and molecular optimisation, and text 

generation can be used in chemical space exploration. We can move from rule-based models to 

data-driven ones. AI-generated ideas from the whole relevant chemical space can be used for 

scaffold hopping and hit finding. Fast molecular optimisation is possible through AI-designed 

libraries. Progress in free-energy perturbation affinity prediction improves scoring of AI-generated 

molecules. 2Better prediction of synthetic routes is possible through new algorithms and there are 

novel and more flexible ways of predicting molecular properties. 

Single-layer NNs have been used in modelling of Quantitative Structure‐Activity Relationships (QSAR) 

for years but recent applications use more complex networks such as multi-layer, feed-forward NNs, 

convolutional NNs, auto-encoder NNs, and recurrent neural networks (RNNs), trained using 

maximum likelihood estimation to maximise the likelihood of the next character. Recurrent NNs 

sample the whole chemical space in hit finding and scaffold hopping. A focused chemical space can 

be sampled with a transformer for molecular optimisation. Generative AI in pharma is still on the 

ascent in the Gartner Hype Cycle for Artificial Intelligence, 2021 and will peak in 2-5 years. 

The chemical space for a file of size 41 GB is 109 structures if it is traditionally enumerated whereas 

generative models can sample practically unlimited chemical space. They do not contain any explicit 

molecules but generate them probabilistically. An RNN learns the rules of chemistry, not the training 

examples. The trained RNN can then generate druglike molecules: SMILES are sampled and a 

probability distribution for each token (character) is used to generate a physicochemical property, or 

a structure (in which case, training is harder). 

In a collaboration with Jean-Louis Reymond’s team, Engkvist and his co-workers explored whether it 

is possible to show that a deep learning based molecular generator is sampling the whole relevant 

chemical space and only that chemical space. They trained an RNN with a subset of SMILES from the 

enumerated GDB-13 database of 975 million molecules. They showed that a model trained with 1 

million structures reproduces 68.9% of the entire database after training, when sampling 2 billion 

https://www.warr.com/
https://www.gartner.com/en/newsroom/press-releases/2021-09-07-gartner-identifies-four-trends-driving-near-term-artificial-intelligence-innovation
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molecules. An analysis of the generated chemical space showed that complex molecules with many 

rings and heteroatoms are more difficult to sample.1 

The teams then performed a benchmark on models trained with subsets of GDB-13 of different sizes 

with different SMILES variants, recurrent cell types, and hyperparameter combinations.2 New 

metrics were developed that define how well a model has generalised the training set. The 

generated chemical space was evaluated with respect to its uniformity, closedness and 

completeness. The results showed that models that use long short-term memory (LSTM) cells 

trained with 1 million randomised SMILES are able to generalise to larger chemical spaces than the 

other approaches and they represent more accurately the target chemical space. 

Using reinforcement learning (RL), an RNN can be tuned to target a particular section of chemical 

space with optimised desirable properties using a scoring function but ligands generated by some RL 

methods tend to have relatively low diversity, and sometimes even result in duplicate structures. 

Engkvist’s team has developed a new method to address this issue: memory-assisted RL introduces a 

memory unit and a scaffold penalty assures that diverse scaffolds are identified.3 

Mixed improvements with novel deep learning methods have been reported: there has been no 

“AlphaFold moment” in blind bioactivity prediction competitions. Gradient descent NNs are 

approximately kernel machines. Large improvements would imply a novel way of assessing 

molecular similarity. Pre-training can improve prediction capacity. The data used are more important 

factors than molecular representation and machine learning (ML) algorithms. Uncertainty 

quantification and interpretability have to be considered. Most models in the future are likely to be 

based on deep learning because of their flexibility. 

The machine learning ledger orchestration for drug discovery (MELLODDY) project aims, over three 

years, to enhance predictive ML models on the decentralised data of 10 pharmaceutical companies, 

without exposing proprietary information. A multi-task approach across partners aims to improve 

predictive performance and applicability. Compound and activity data and assay-specific models 

remain locked on the server of the pharma that owns them. Lower-level model components are 

securely exchanged and trained over the network. Pre-agreed access arrangements are strictly 

enforced. In year two, a study showed that multi-partner modelling yields superior predictive 

models in drug discovery. 

The MegaMolBART drug discovery model being developed by NVIDIA and AstraZeneca will be used 

in reaction prediction, molecular optimisation and de novo molecular generation. It is based on 

AstraZeneca’s MolBART transformer model and is being trained on ZINC4 using NVIDIA’s Megatron 

framework to enable massively scaled-out training on a supercomputing infrastructure. 

Engkvist’s team have demonstrated the utility of a 3D shape and pharmacophore similarity scoring 

component in molecular design with a deep generative model trained with reinforcement learning 

(REINVENT).5 Using dopamine receptor type 2 (DRD2) as an example and its antagonist haloperidol 1 

as a starting point in a ligand-based design context, they have shown in a retrospective study that a 

3D similarity enabled generative model can discover new leads in the absence of any other 

information. It can be used for scaffold hopping and generation of novel series. 3D similarity based 

models were compared against ones based on 2D QSAR, indicating a significant degree of 

orthogonality of the generated outputs, with the former having a more diverse output.6 

https://www.melloddy.eu/
https://blogs.nvidia.com/blog/2021/04/12/ai-drug-discovery-astrazeneca-university-florida-health/
https://github.com/MolecularAI/MolBART
https://github.com/NVIDIA/Megatron-LM
https://github.com/MolecularAI/Reinvent
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A major obstacle of generative models is producing active compounds in which predictive QSAR 

models have been applied to enrich target activity. QSAR models are inherently limited by their 

applicability domains. A structure-based scoring component for REINVENT overcomes these 

limitations. DockStream7 is a flexible, stand-alone molecular docking wrapper that provides access to 

a collection of ligand embedders and docking back-ends. 

Nevertheless, AI alone cannot transform drug design. High-throughput data generation, 

automatisation in the DMTA cycle, and combining AI with physics (e.g., to predict physicochemical 

properties and estimate binding affinity) can add value to AI approaches. Combining AI with big data 

can transform synthesis prediction.8 In AstraZeneca, chemists have access to data on 20 million 

reactions in the ReactionConnect database, from which predictive models can be built and used to 

automate synthesis. ReactionConnect is populated with data from AstraZeneca reaction sources and 

ELNs, a USPTO database, and Reaxys and Pistachio flat files.9 AiZynthFinder can be used in 

retrosynthetic planning. The algorithm is based on a Monte Carlo tree search that recursively breaks 

down a molecule to purchasable precursors. The tree search is guided by an artificial neural network 

policy that suggests possible precursors by using a library of known reaction templates.10 A “Ring 

Breaker” algorithm11 improves the route-finding. It uses a data-driven approach to enable the 

prediction of ring-forming reactions, useful in establishing the synthetic accessibility of 

unprecedented ring systems. Another improvement, RAscore,12 is an ML-based method able to 

classify whether a synthetic route can be identified or not for a particular compound. 

Engkvist summarised the lessons that AstraZeneca has learned. The needs of workers in discovery 

chemistry and process chemistry are very different. Extracting and integrating reaction data is hard 

work. It is challenging to assess the utility of different tools such as advanced building block look-up. 

The impact on AI approaches on synthetic routes has mainly been from specialised tools such as Ring 

Breaker. Software from the Molecular AI department at AstraZeneca is openly available. iLAB is 

AstraZeneca’s automated synthesis platform. 

Engkvist is optimistic about the future of AI in drug design because of increased computational 

power, increased automation which provides large and consistent datasets, and advances in 

computational algorithms such as those that merge physics‐based modelling and ML. Metrics such 

as time-saving cannot be used to measure success because they are the results of success not the 

success itself. Success can be measured by trust in the AI-designed molecules in the same way as, for 

instance, X‐ray crystal structures are trusted. There must be trust in the predictions for individual 

molecules and trust that the AI generated molecules are the best molecules to take the project most 

efficiently to a clinical candidate. 

There remain some challenges for AI driven drug design. They include scaling ML and AI solutions for 

drug design to a whole drug discovery project portfolio including projects with low data volume. 

Binding affinity and solubility predictions are major bottlenecks. The “Cambrian revolution” of new 

AI methods makes it difficult to assess progress. Flexibility of chemistry automation is another 

challenge. There are also educational, cultural and logistical challenges besides scientific ones. The 

bar is set high to transform drug design. 

https://github.com/MolecularAI/Reinvent
https://github.com/MolecularAI/DockStream
https://github.com/MolecularAI/DockStream
http://figshare.com/articles/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://www.elsevier.com/solutions/reaxys
http://nextmovesoftware.com/pistachio
http://www.github.com/MolecularAI/aizynthfinder
https://github.com/MolecularAI
https://www.astrazeneca.com/r-d/our-technologies/ilab.html
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Driving lead optimisation with BRADSHAW 
Ian Wall, Richard Lonsdale, David Marcus, Darren Green, Stephen Pickett, David Hirst, 

GlaxoSmithKline (GSK), Stevenage, UK 

A de novo design program generates molecular structures which satisfy a set of constraints. Classic 

problems with de novo design algorithms are nonsense structures, structures with intrinsic liabilities, 

and structures that cannot be made. Biological Response Analysis and Design System using an 

Heterogenous, Automated Workflow (BRADSHAW), GSK’s automated molecular design platform 

(Figure 1),13 takes a dual approach, using cheminformatics methods to generate plausible structures 

based on what has been done before,14-17 and deep learning algorithms trained on relevant GSK 

chemistry space including novel methods.5,18 

 

A GSK team has reported19 three Turing-inspired tests designed to evaluate the performance of 

three molecular generators: BioDig, a matched molecular pair-based algorithm,16 BRICS (a fragment 

replacement based algorithm),15 and RG2Smi,18 which translates a reduced graph input to a SMILES 

output. BioDig performed excellently against all tests. 

Currently, BRADSHAW is limited to cheminformatics and ML models. There are no 3D or docking 

methods, or physics-based methods such as free energy perturbation (FEP+),20 but they can be 

included in a design workflow as an additional step. A multi-parameter optimisation (MPO) approach 

is used, in automated workflows, to design molecules with a balanced profile. MPOs can be built for 

predicted values and confidence in them, allowing an active learning approach with algorithmic 

definition of “explore and exploit”. 

Wall presented a case study in an active drug discovery programme. The process maximised 

efficiency by moving the synthetic chemistry resource between two series, allowed updating of 

models with new data whilst chemists moved onto alternative series, and minimised the number of 

compounds made without information from previous compounds. The computational chemistry 

workflow began with molecular generation from seed compounds , followed by building, filtering 

and rebuilding QSAR models, docking and scoring, and removal of undesirable compounds (by 

medicinal chemists). FEP calculations were then carried out and the data were collated in Spotfire 

Figure 1. GSK’s BRADSHAW. 
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for review by medicinal chemists. More than 2 million molecules were generated, 2822 FEP 

calculations were made, and 38 local models were built, in over more than 30,000 GPU hours. 

The technologies used in BRADSHAW are modern ML, active learning, gated recurrent unit cell 

recurrent neural network (GRU RNN, a new molecule generator which increases the ability to make 

changes at multiple positions, giving better coverage of chemists’ ideas),21 BRICS, BioDig, Matsy, and 

RG2smi. In addition, library enumeration, Free-Wilson analysis, pKa prediction, MetaSite, and 

protein-ligand interaction fingerprints are used. 

Chemists selected compounds for synthesis and viewed their profiles against a range of parameters. 

This technique was used in conjunction with an active learning explore-exploit plot, where with MPO 

score on the x axis and MPO confidence on the y axis, the top right quadrant is compounds for 

exploitation and the bottom right quadrant is compounds for exploration. Wall showed graphs 

illustrating the rapid increase in “zero-risk” compounds for the two series since BRADSHAW was 

introduced in February 2020. The successful outcome of this pilot project was two leads with in vivo 

activity. Wall displayed some of the interesting range of structures (core and R-groups) resulting 

from exploration of the chemical space, showing some simple structures but with different R-groups 

and complexity starting to appear. 

Close interactions were needed among computational, and medicinal and synthetic chemists, 

including those in high throughput chemistry (HTC), to get maximum value from the technology. 

Many other functions were also essential. Wall outlined some pros and cons from the medicinal 

chemist’s viewpoint. From molecule generation, interesting, novel ideas were produced, with a good 

synthetic success rate, but matched molecular pairs were lacking and there were incomplete 

enumerations. Scoring and selection were an improvement over the subjective methods used 

previously, but robustness of pharmacokinetic (PK) predictions and inefficiency in selection meetings 

were cons. Iterative cycles provided focus but lack of design input, freedom to explore, and 

medicinal chemistry intuition were criticised. There was an excellent working relationship between 

medicinal chemists and computational chemists. Unfortunately, data generation has been 

challenging and restrictive. 

Learnings from this pilot project are driving improvements in the system. GRU RNN, improved 

structural filters and visualisation have been implemented. So has DISCONNECT dHTCscore, a system 

to identify automatically compounds that are synthesisable from available reagents and possible 

arrays. Medicinal chemists and computational chemists working together have learnt a huge amount 

about logistics, technology and ways of working. 

Efficient ML strategies to explore chemical reactivity 
Fernanda Duarte, University of Oxford, UK 

The Duarte group have applied computational methods to design new catalysts and study reaction 

mechanisms. Their open source tool, cgbind can be used to generate and analyse metallocage 

structures.22 Another tool, autodE is an open-source Python package capable of locating transition 

states and minima and delivering a full reaction energy profile from 1D (SMILES) or 2D chemical 

representations.23 It combines graph theory and chemical knowledge in order to reduce the size of 

the chemical space required for sampling. It is compatible with multiple electronic structure 

packages, is broadly applicable and requires minimal user expertise. 

https://www.nextmovesoftware.com/matsy.html
https://www.moldiscovery.com/software/metasite/
http://cgbind.chem.ox.ac.uk/
https://github.com/duartegroup/autodE
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Realistic simulations of chemical or biochemical reactions require the inclusion of the chemical 

environment where they occur (e.g., solvent and/or enzyme). Two main approaches have been 

historically used to account for these complex environments. The first is empirical reactive force 

fields (e.g., EVB), in combination with molecular dynamics (MD) or Monte Carlo (MC) simulations, 

which sample a reaction’s potential energy surface but are limited in accuracy and transferability. 

Second are ab initio and quantum mechanics/molecular mechanics (QM/MM) which are accurate 

but computationally costly. ML force fields have the potential to revolutionise force-field based 

simulations, aiming to provide the best of both worlds. 

Duarte’s team24 has used the Gaussian Approximation Potential (GAP)25-27 framework with smooth 

overlap of atomic positions (SOAP)25 descriptors to generate inexpensive potentials for solution 

phase reactions. GAPs have been applied to organic molecules,28 and elemental materials27,29 but 

this was the first example demonstrating its use to study chemical reactions. 

Starting with solute and solvent structures, they developed a training strategy and devised a 

prospective error metric to assess the accuracy of the potentials. Active learning, where new training 

data are added based on the current state of the potential, is used for generating databases and 

accelerating the fitting process. The strategy used by Duarte’s team starts from a small number of 

randomly selected points in the configuration space, from which active learning training of intra- and 

inter-molecular components of the energy and forces is carried out. The CUR algorithm27,30 is 

applied. 

Splitting the database into training and test sets and using a standard retrospective validation 

strategy is not practical in the current application so a temporal cumulative error metric was used 

based on the time required for the cumulative error to exceed a given threshold. This does not 

require a priori knowledge of the region of configuration space likely to be sampled during a 

simulation with the potential. The user can specify an acceptable margin of error. The method 

samples regions not accessible to direct evaluation, ensures stable dynamics, and penalises large 

errors resulting in instabilities. 

For bespoke ML potentials to be routinely developed for molecular systems, one would hope to 

complete the data generation and model training, and know the accuracy of the resulting potential 

within a matter of hours to days. With this in mind, the team trained GAP models to simulate bulk 

water, aiming to minimise the number of required ground truth evaluations as well as the required 

human intervention, while maximising stability (measured by the new prospective error metric). 

Only when the relevant length and energy scales of the system are decomposed by treating intra- 

and inter-molecular components separately was it possible to obtain a potential that is stable for 

picoseconds. 

The model fitted using this approach yields radial distribution functions (RDFs) in good agreement 

with the ground-truth method, considering both the location and intensities of the peaks 

corresponding to the first and second coordination shells. The real significance is in moving to more 

accurate ground-truth methods, for which a full MD simulation would not be straightforward: 

indeed, using the same method, a hybrid DFT-quality water model can be generated within a few 

days, which would be inaccessible with other methods. The results suggest that the training strategy 

(and hyperparameter selection) is suitable independent of the reference method. 



7 
 

To demonstrate the transferability of the models, Duarte briefly presented results of successful 

application to aqueous Zn (II); to metallocage dynamics;31,32 to an SN2 reaction in gas phase and in 

explicit solvent (where, in both cases, with only hundreds of evaluations of the reference method, 

reactive ML dynamics is possible); and to a Diels-Alder reaction in the gas phase. 

Duarte concluded that Gaussian Approximation Potentials can be trained in a day for reactive 

molecular systems; prospective model validation is crucial; general potentials must be more than 

pairwise additive; accuracy beyond density functional theory (DFT) can be approached; and training 

can be fully automated. 

ML models to support risk assessment of small molecules 
Andrea Volkamer, Charité Universitätsmedizin Berlin, Germany 

In the risk assessment of novel compounds, regulatory agencies require in vivo testing for several 

toxic endpoints. Alternative (in silico) strategies include read-across,33 structural alerts,34 and ML and 

QSAR. In this talk, Volkamer addressed computational methods for holistic risk assessment,35 and in 

particular, KnowTox,36 CalUpdate,37 ChemBioSim,38 and cytotoxicity maps.39 

KnowTox, developed in collaboration with BASF, has three different approaches to allow prediction 

of potentially toxic effects of query compounds: ML models for 88 endpoints, alerts for 919 toxic 

substructures,40 and support for read-across in the form of similarity search with RDKit Morgan 

fingerprints, MACCS keys and physicochemical descriptors with the Tanimoto similarity coefficient.41 

When deriving a robust and predictive in silico model it is important to examine not only the 

statistical quality of the model but also the estimate of its predictive boundaries. Key factors are 

applicability, reliability and decidability.42 Conformal prediction (CP) is a method for confidence 

estimation in predictions.43 The model must be statistically valid at a given confidence level and 

additional calibration step is that the CP framework compares predictions to those previously seen. 

In a binary classification, validity is the percentage of correct classifications and efficiency is the 

percentage of single class predictions (SCPs). Volkamer’s team built 88 CP models (using RF as the 

underlying ML model) in KnowTox and the ToxCast dataset of about 8000 compounds and 1000 

endpoints. 

They then tested, in collaboration with BASF, how the model performed on one of the company’s 

proprietary antiandrogen activity (AA) datasets. The three datasets used were ToxCast AA (for 

training and testing) and two external AA datasets, from BASF36 and Norinder et al.44 Results are 

shown in Table 1. Firstly, the CP technique was deployed (Table 1a, where accuracy of SCPs 

corresponds to the ratio of correct SCPs divided by all SCPs). Secondly, to improve validity and 

information efficiency, two adaptations were suggested: k-nearest neighbour (kNN) normalisation 

and balancing the dataset during training (Table 1b). While, initially, valid cross-validation models 

were obtained, validity and accuracy dropped on in-house data. The implemented adaptions 

restored validity and improved accuracy at the cost of efficiency but from a toxicologist’s point of 

view, it is better to have no prediction for a compound than a wrong one. 

https://rdkit.org/
https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data
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CalUpdate37 (developed in conjunction with workers at University College London and the 

Universities of Uppsala and Stockholm) assesses model calibration and suggests strategies to update 

models to account for predictivity drops when training and test data do not stem from the same 

distribution. Here, CP is used to assess the calibration of the models. Using the chronologically 

released Tox21 subsets Tox21Train, Tox21Test and Tox21Score, the researchers observed that while 

internally valid models could be trained using cross-validation on Tox21Train, predictions on the 

external Tox21Score data resulted in higher error rates than expected. To improve the external 

predictions, a strategy exchanging the calibration set with more recent data, such as Tox21Test, was 

introduced. The proposed improvement strategy, exchanging the calibration data only, is convenient 

as it does not require retraining of the underlying model. 

In ChemBioSim, workers at BASF, Örebro and Vienna Universities and in Volkamer’s team have 

enhanced the performance of CP models for in vivo endpoint predictions by combining molecular 

descriptors (RDKit Morgan fingerprints and physicochemical properties) with predicted bioactivity 

ones.38 Biological fingerprints, describing the activity profile of a molecule, are more mechanistic 

descriptors, independent of molecular structure. These are actual assay measurements, but since 

they are not necessarily available at scale and would need to be measured for new compounds as 

well, the researchers chose to predict them by training CP models for 373 biological assays. The 

method was exemplified on three in vivo endpoints capturing genotoxic (MNT), hepatic (DILI), and 

cardiological (DICC) issues. The incorporation of bioactivity descriptors increased the mean F1 scores 

of the MNT model from 0.61 to 0.70 and for the DICC model from 0.72 to 0.82 while the mean 

efficiencies increased by roughly 0.10 for both endpoints. In contrast, for the DILI endpoint, no 

significant improvement in model performance was observed. An analysis of the most important 

bioactivity features allowed detection of novel and less intuitive relationships between the predicted 

biological assay outcomes used as descriptors and the in vivo endpoints. 

Finally, Volkamer’s team have studied cytotoxicity prediction,45 one of the earliest handles in drug 

discovery, using a deep learning approach trained on a dataset of over 34,000 compounds, fewer 

than 5% of which were cytotoxic. The dataset was from collaborators at the Leibniz-

Forschungsinstitut für Molekulare Pharmakologie in Berlin. The encoding involved RDKit Morgan 

fingerprints. A deep NN with parameter optimisation, balancing and 10-fold nested cross-validation 

were used. The model reached a balanced accuracy of over 70%, similar to previously reported 

studies using RF or CP, but different underlying cytotoxicity datasets and activity shares.46 NNs are 

often described as a “black boxes”. To overcome this absence of interpretability, a deep Taylor 

decomposition method with layer-wise relevance propagation (LRP)47 was investigated to identify 

Table 1a. KnowTox Case Study 
 
Dataset Efficiency 

 
Accuracy (SCPs) # toxic/ non-toxic 

 all cl.1 cl.0 all cl.1 cl.0  
ToxCast AA 0.87 0.89 0.87 0.78 0.80 0.78 868/5842 
Norinder 0.79 0.77 0.81 0.68 0.70 0.67 160/201 
BASF 0.94 0.98 0.91 0.56 0.97 0.07 280/254 
 
Table 1b. After kNN Normalization and Balancing 
 
Norinder 0.43 0.33 0.52 0.74 0.67 0.78 160/201 
BASF 0.20 0.18 0.23 0.75 0.80 0.71 280/254 

 

https://tox21.gov/
https://rdkit.org/
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toxicophores. A forward path of the trained model is used to get a prediction score which is 

interpreted as relevance. A backward path of the trained model is used to get decompositions of 

relevance on input. Toxicophores are identified by mapping the relevance back to atom 

environments, namely the bits in the Morgan fingerprints. The study also introduced cytotoxicity 

maps which provide a visual structural interpretation of the relevance of these toxicophore 

substructures. 

About 2.8 million laboratory animals were used in Germany in 2018; establishment of alternative 

methods could lead to a reduction of animal testing. To this end, Volkamer’s team have used CP 

models and deep learning to predict compounds likely to be ineffective or toxic and exclude them a 

priori from animal testing. Holistic and combined approaches with proven applicability, reliability 

and interpretability, demonstrated by predictive power and prospective studies will increase 

acceptance by regulatory authorities. 

Exploring molecular space and accelerating drug discovery with Clara 

Discovery and MegaMolBART 
Michelle Gill, NVIDIA, Santa Clara, CA, USA 

To extract scientific insights from today’s massive datasets we need methods that take advantage of 

the complexity of the data and can scale efficiently. The increased degree of parallelism afforded by 

GPUs has made them ideal for the acceleration of analysis and visualisations. Such applications can 

be combined with methods derived from deep learning to create analysis pipelines that are both 

faster and more accurate than the existing state of the art. Clara Discovery is a collection of 

frameworks, applications, and AI models that together accelerate drug discovery, supporting 

research in genomics, microscopy, virtual screening, computational chemistry, visualisation, clinical 

imaging and natural language processing (NLP). Gill concentrated on RAPIDS and MegaMolBART.48 

One example is an interactive clustering and visualisation workflow in which RDKit-derived Morgan 

fingerprints from ChEMBL (or another database) are used in principal component analysis (PCA), 

kNN clustering, and UMAP visualisation. This pipeline is implemented using cuML and can be 

performed in real-time due to the acceleration afforded by GPUs. The plotly interface can be 

customised. 

MegaMolBART48 is mentioned in Engkvist’s talk earlier in this report. Pre-training is performed on a 

subset of ZINC15. SMILES molecules are masked and enumerated (randomised) during training. 

NVIDIA carries out training on a DGX SuperPOD (4-8 nodes x 8 A100 GPUs). AstraZeneca is 

concurrently training on Cambridge-1. The pre-trained model is wrapped into a service (Figure 2). 

The interactive explorer provides a framework for visualising and customising workflows. Deep 

learning derived features from MegaMolBART can enable analyses that previously required hours to 

be completed in seconds. 

https://github.com/volkamerlab
https://github.com/volkamerlab
https://www.nvidia.com/en-us/clara/
https://www.nvidia.com/en-us/clara/drug-discovery/
https://www.nvidia.com/en-us/deep-learning-ai/software/rapids/
https://blogs.nvidia.com/blog/2021/04/12/ai-drug-discovery-astrazeneca-university-florida-health/
https://rdkit.org/
https://www.ebi.ac.uk/chembl/
https://umap-learn.readthedocs.io/en/latest/
https://github.com/rapidsai/cuml
https://plotly.com/
https://blogs.nvidia.com/blog/2021/04/12/ai-drug-discovery-astrazeneca-university-florida-health/
https://blogs.nvidia.com/blog/2021/04/12/ai-drug-discovery-astrazeneca-university-florida-health/
https://www.nvidia.com/en-us/data-center/dgx-superpod/
https://www.nvidia.com/en-gb/industries/healthcare-life-sciences/cambridge-1/
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In future, NVIDIA will investigate the limits of model size of MegaMolBART and will develop novel 

model architectures for improved molecule generation. Predictive tasks such as physicochemical 

properties, reaction prediction and retrosynthetic synthesis could be based on model embeddings. 

The user experience will be improved by automation of data processing, pre-training and 

downstream tasks. 

Challenges and opportunities for machine learning in drug discovery 
W. Patrick Walters, Relay Therapeutics, Cambridge, MA, USA 

Over the last few years there has been a dramatic growth in the application of ML in drug discovery. 

It is impacting numerous areas including image analysis, organic synthesis planning, predictive 

models, quantum chemistry and molecule generation but there are significant challenges. AI 

predictions are typically treated as a “black box” which supplies no explanation, yet interpretable 

models could drive discovery by providing a rationale that convinces people to perform experiments, 

allowing scientists to gain insights that drive compound design, and enabling efficient debugging of 

model performance. 

Matveieva and Polishchuk49 have published benchmarks for interpretation of QSAR models. Feature 

attribution techniques are popular choices for explainability tools, as they can help elucidate which 

parts of the provided inputs used by an underlying supervised-learning method are considered 

relevant for a specific prediction, but Jimenez-Luna et al.50 found that none of the feature attribution 

methods they tested generalised well when confronted with unseen examples. One interesting 

approach to explainability is the use of “counterfactuals”.51 They are used in credit card approval 

applications because the law demands that credit card denial be explained. These methods look at 

the small differences between two people, one whose card is declined and the other whose card is 

approved. Walters presented an example of the use of counterfactuals for prediction of the 

solubility of imatinib. He generated analogues, predicted their solubility, sorted them by similarity 

and evaluated the counterfactuals, looking for small differences. This method seems to work (Figure 

3). 

Figure 2. MegaMolBART model service. 
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Another issue is impossible molecules emerging from generative models. GuacaMol52 benchmarking 

for de novo molecular design employs Walters’ earlier metrics for compound quality but the filters 

do not detect a number of “chemically impossible” features such as triple bonds in aromatic rings, so 

Walters has written “silly walks” code. 

Another issue is molecular representations. For many years, machine learning models have been 

constructed using standard molecular fingerprints. More recently, a number of groups have 

published methods that use neural networks to generate targeted molecular representations.53,54 To 

determine if learned representations are better, Walters has written “Yet another ML method 

comparison” to compare a number of commonly used molecular representations and algorithms. In 

these tests a standard XGBoost method using molecular fingerprints tends to outperform the 

learned representations on smaller datasets (less than 2000 molecules). 

Why do we not use 3D descriptors more often in ML? Traditional ML methods map one object to 

one label but molecules can have many 3D conformations. To tackle the relationship between 

multiple instances and a single label, specialised multiple instance machine learning methods must 

be used. Recent papers55,56 examine whether 3D multiple‐instance approaches will work. Results 

vary across datasets but 3D multiple‐instance models do appear to be competitive with 2D ones. 

Finally, Walters discussed uncertainty and model applicability. A number of methods have been tried 

to determine when a model is applicable but none of them is ideal. There is a pitfall in scaffold-

based57 cross-validation, training on one scaffold and testing on another. The idea feels good but 

why should it work? Different chemotypes often make different interactions. The model must 

implicitly learn these interactions. Walters found that 12 inhibitors of p38 have a very wide variety of 

interactions in ATP binding pockets. It is important to evaluate your model in context. 

ML is impacting many aspects of drug discovery and there are many issues to address, including 

explainability, representation, model applicability, and multi‐objective optimisation. Whilst we have 

made progress on parts of the puzzle, we are still far from a complete solution. To succeed we need 

the overlapping domains of “hacking skills”, mathematics and statistics knowledge, and substantive 

domain expertise. 

Figure 3. Predicted soluble analogues of imatinib. 

https://github.com/PatWalters/silly_walks
https://github.com/PatWalters/yamc
https://github.com/PatWalters/yamc
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Molecular Transformer‐aided biocatalysed synthesis planning 
Daniel Probst, Matteo Manica, Yves Gaëtan Nana Teukam, Alessandro Castrogiovanni, Federico 

Paratore, Teodoro Laino, IBM Research Europe, Rüschlikon, Switzerland 

Enzyme biocatalysts are an integral part of green chemistry strategies towards a more sustainable 

and resource‐efficient chemical synthesis. Most are proteins, one third of them require one or more 

cofactor in the form of inorganic ions, and others require complex molecules as cofactors. Enzymes 

affect only the reaction rates, not the equilibria, and rate enhancements brought about by enzymes 

are in the range of 5-17 orders of magnitude. Enzymes have industrial uses in fermentation (e.g., in 

antibiotic production and brewing) and in enzyme technology (e.g., paper pre-bleaching, food 

processing and enantionmerically pure amino acids). 

They are stereo, regio and chemoselective, highly efficient, reusable and biodegradable, and 

moderate temperatures and pH are required, but they are unstable at high temperatures or extreme 

pH, require expensive co-substrates, are potential allergens, and generate metabolic by-products. 

Unfortunately, a narrow substrate scope is documented in enzyme databases and synthetic chemists 

have difficulties in identifying patterns within enzyme classes that allow them to extend those 

patterns to unreported substrates. In addition, other domain-specific knowledge factors such as 

stereo- and regioselectivity are lacking. 

Biocatalytic retrosynthesis has recently been automated by creating expert-curated reaction rules 

based on available literature, creating a network of molecules connected by enzymes and reaction 

rules, and applying the rules to arbitrary query molecules in order to find both a matching enzyme 

and a precursor that can be purchased. RetroBioCat58 is an example. Unfortunately the creation of 

expert-curated reaction rules does not scale. 

Kreutter et al.59 have tackled this issue by using multi-task transfer learning to train the molecular 

transformer60, a sequence-to-sequence machine learning model, with one million reactions from the 

USPTO database combined with 32,181 enzymatic transformations annotated with a text description 

of the enzyme. This translates the substrates and enzyme into products. The resulting enzymatic 

transformer model predicts the structure and stereochemistry of enzyme-catalysed reaction 

products with remarkable accuracy. The researchers combined the reaction SMILES language of only 

405 atomic tokens with thousands of human language tokens describing the enzymes, such that the 

enzymatic transformer not only learned to interpret SMILES, but also the natural language as used 

by human experts to describe enzymes and their mutations. 

Probst et al. have, in addition to the forward model, introduced a retrosynthesis model using a class 

token based on the Enzyme Commission (EC) number classification scheme that allows them to 

capture catalysis patterns among different enzymes belonging to the same hierarchical families.61 

Data sources are BRENDA, MetaNetX, PathBank, and Rhea, leading to 62,222 deduplicated, 

biocatalysed reactions. Probst showed TMAP62 visualisations of the substrates and products (using 

MAP4 fingerprints).63 Modified cofactors are removed from the products. The dataset is not 

balanced: transferases are over-represented. Tokenisation includes the first three parts of the EC 

number. An EC number (e.g., 2.6.1.2) has four levels: class, sub-class, sub-sub-class, and serial 

number (SN). The SN is not used because adding it causes a drop in performance. Performance is 

limited by dataset size, diversity and quality. The forward prediction model achieves a top‐5 

https://en.wikipedia.org/wiki/Enzyme
http://figshare.com/articles/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://www.brenda-enzymes.org/
https://www.metanetx.org/
https://pathbank.org/
https://www.rhea-db.org/
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accuracy of 62.7%, while the single-step retrosynthetic model shows a top‐1 round‐trip accuracy of 

39.6%. As regards accuracy across classes, class 2, a big class, pushes up accuracy whereas class 1 is 

poorer because there are too few training data. 

Attention weights learned by a transformer encode atom rearrangement information between 

products and reactants. Attention weight analysis unboxes the forward model to understand how 

enzyme information is utilised. The IBM team has shown that the EC tokens relate to the centres of 

the enzymatic reaction and that the forward model captures enzymatic reaction rules based on the 

EC number. The model mimics the expert-curated reaction rules in automated retrosynthesis. 

A resident chemist has tried the system out and has been able to replace a traditional reaction with 

an enzyme-catalysed one. Anyone can try the system for free at IBM RXN for Chemistry. 

Stereochemistry is included for all reactions. The enzymatic data and the trained models are 

available through the RXN for Chemistry network and on GitHub. 

Highly accurate protein structure prediction with AlphaFold 
Alexander Pritzel, DeepMind, London, UK 

A central part of DeepMind’s mission is to solve fundamental scientific problems with AI. Predicting 

the 3D structure of a protein from its amino acid sequence is one such challenge. AlphaFold64 is 

DeepMind’s model that aims to solve this problem. Proteins consist of chains of amino acids that 

fold into a 3D structure and the exact 3D shape is important for a protein’s function. Experimental 

structure determination takes months to years; structure prediction can provide actionable 

information faster. 

Critical Assessment of Structure Prediction (CASP) is an organisation that conducts double-blind, 

community-wide experiments to determine the state of the art of computational methods for 

modelling protein structures. The CASP assessment involves predicting recently solved structures 

that are not yet public. In the 14th biennial CASP (CASP14) across a wide range of difficult targets 

AlphaFold was the top-ranked method: assessors judged its predictions to be at an accuracy 

“competitive with experiment” for approximately two thirds of proteins. 

A key question in the design of neural network architectures is the question of inductive bias, which 

controls which kind of functions are easy or hard to model. In convolutional networks (used for 

computer vision, for example) the data are in a regular grid and information flows to local 

neighbours. AlphaFold 1 used this inductive bias. In recurrent networks (e.g., for language) data are 

in an ordered sequence and information flows sequentially. In graph networks (e.g., for 

recommender systems or molecules) data are in a fixed graph structure and information flows along 

fixed edges. In an attention module (e.g., for language) data are in an unordered set and 

information flow is dynamically controlled by the network (via keys and queries). 

High-throughput sequencing technologies have enabled the construction of a multiple sequence 

alignment (MSA), and accurate coevolution signals can be disentangled. Detected coevolved pairs 

can be used as residue-residue contact constraints in protein structure modelling and prediction of 

protein-protein interactions.65,66 In AlphaFold physical and geometric insights are built into the 

network structure, and are not just a process around it. This is an end-to-end system directly 

producing a structure instead of inter-residue distances. Inductive biases reflect knowledge of 

https://rxn.res.ibm.com/
https://rxn.res.ibm.com/
https://github.com/rxn4chemistry
https://predictioncenter.org/casp14/zscores_final.cgi
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protein physics and geometry. The positions of residues in the sequence are de-emphasized. 

Instead, residues that are close in the folded protein need to communicate. The network iteratively 

learns a graph of which residues are close, while reasoning over this implicit graph as it is being built. 

In co-evolution, residues in contact must mutate together (mutation of a single residue breaks the 

contact and the organism with the mutated protein does not survive). Evolution conserves some 

properties such as hydrophobic and hydrophilic amino acids being on the “inside” or “outside” of a 

protein. 

Figure 4 presents an outline of how AlphaFold works. A key input is the MSA, containing sequences 

evolutionarily related to the target. Related sequences are found using standard tools and public 

databases. The input sequence is used to create an array of representations representing all residue 

pairs. AlphaFold can also use template structures from the Protein Data Bank (PDB) but it often 

produces accurate predictions without a template. The Evoformer blocks extract information about 

the relationship between residues. The MSA representation can update the pair representation and 

vice versa. The Structure Module predicts a rotation and translation to place each residue. A small 

network predicts side chain chi angles. The final structure is run through a relaxation process. 

Feeding certain outputs back through the network again improves performance. 

 

As well as a predicted structure, the Evoformer blocks produce two confidence estimates: per-

residue confidence (for predicted local Distance Difference Test, plDDT)67 and pairwise confidence 

(predicted aligned error, PAE). Further detail of the Evoformer architecture is given in Figure 5. In 

triangular attention, consider three points A, B and C. If distances AB and BC are known, the triangle 

inequality places a strong constraint on the distance AC. Evolution and sequence give information 

about relations between residues and pair embedding encodes the relations. The update for pair AC 

should depend on BC and AB. In the graph, edges represent pairs of residues. Since the graph is 

unknown it has to be inferred. There is a triplet relation in this language with cycles of a length of 

three in the graph. The update applied by the layer is based on all cycles involving the edge. More 

abstractly this can be viewed as a transitivity inductive bias that encodes the transitivity of relations 

(e.g., triangle inequality and loop closure). 

Figure 4. AlphaFold overview. 

https://www.rcsb.org/
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The structure module performs end-to-end folding instead of gradient descent. Here the protein 

backbone is modelled as a gas of independent 3D rigid bodies. The spatial structure of the amino 

acid chain is not built into the model but emerges through learning. A 3D equivariant transformer 

architecture updates the rigid bodies modelling the backbone and also builds the side chains by 

predicting torsion angles. The AlphaFold architecture can be trained to high accuracy using only 

supervised learning on PDB data, but accuracy can be further enhanced using an approach similar to 

noisy student self-distillation.68 This is the way AlphaFold makes use of unlabelled sequences. The 

AlphaFold model is first trained on PDB data alone. This first model is used to predict structures on a 

large set of unlabelled sequences and then a second model is trained where the training set is 

enriched by confidently predicted structures of the first model. 

Computational structure prediction is typically underspecified, for example as regards oligomeric 

state, ligands, DNA-binding, experimental conditions, multiple conformations etc. The AlphaFold 

network implicitly models this missing context using a variety of physical and evolutionary 

information. Movies of model interpretability for SARS-CoV-2 ORF8 (T1064, one of the hardest 

examples in CASP14) and a RNA polymerase with over 2000 amino acids (T1044 in CASP14) were 

shown to illustrate how the model can be interrogated. 

Predictions can be interpreted using plDDT and PAE. Roughly speaking, lDDT measures the 

percentage of correctly predicted interatomic distances, not how well the predicted and true 

structures can be superimposed. It rewards locally correct structures, and getting individual domains 

right. plDDT is a measure of local confidence (Figure 6) but high plDDT on all domains does not imply 

AlphaFold is confident of their relative positions. Assessing inter-domain confidence requires the 

PAE metric. This is AlphaFold’s prediction of the position error at residue x, if the predicted and the 

true structures are aligned on residue y. PAE aims to measure confidence in the relative positions of 

pairs of residues. It is mainly used to assess relative domain positions, but is applicable whenever 

pairwise confidence is relevant. PAE is displayed as a 2D plot. If residue y is aligned to the true 

structure and the position error at residue x is measured, the colour at (x, y) is AlphaFold’s prediction 

of that error. 

Figure 5. Evoformer. 

https://openaccess.thecvf.com/content_CVPR_2020/papers/Xie_Self-Training_With_Noisy_Student_Improves_ImageNet_Classification_CVPR_2020_paper.pdf
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The AlphaFold protein structure database is a website developed by DeepMind and EMBL-EBI that 

contains pre-run predictions for 21 model organisms. The AlphaFold colab is a website hosting a pre-

written Python program to be executed on a machine in the cloud; you enter a sequence and hit 

“play” at each step. There are also several other community developed colabs for structure 

prediction. You can also download the code and run AlphaFold on your own machine. AlphaFold has 

been received with excitement by the biology community and incorporated in other tools. It has 

been used in accelerating structure determination, in docking, in predicting disorder and in finding 

new insights from the AlphaFold database. There is much exciting work ahead for the structural 

biology field: complexes, disorder and conformational change etc. DeepMind is very excited to see 

what others are building on top of the AlphaFold database. There is great potential in AI for science 

as a whole. 

“Attending” to co‐crystals in the Cambridge Structural Database 
Aikaterini Vriza,1 Angelos B. Canaj,1 Rebecca Vismara,1 Laurence J. Kershaw Cook,1 Troy D. Manning,1 

Michael W. Gaultois, 1 Peter A. Wood,2 Vitaliy Kurlin,1 Neil Berry,1 Matthew. S. Dyer,1 Matthew J. 

Rosseinsky.1 (1) University of Liverpool, UK (2) Cambridge Crystallographic Data Centre, Cambridge 

UK 

A co-crystal is a crystalline single-phase material composed of two or more different molecular 

compounds in a specific stoichiometry. They are connected via non-covalent interactions, such as 

hydrogen bonding, π–π stacking, halogen bonds and charge transfer interactions. Co-crystals have 

been particularly useful in improving the physicochemical properties of potential drugs but the 

current work was focused on the design of co‐crystals with electronic functionalities. Polycyclic 

aromatic hydrocarbons (PAHs) self-assemble via π–π interactions and are considered promising 

candidates for electronic materials. Vriza and her co-workers aimed not only to detect some weakly 

bound PAH co‐crystals but also to understand the important factors contributing to their formation. 

The aim is to find molecular pairs which are more likely to form a co-crystal. The problem is that we 

know which combinations can form co‐crystals but we have no information for those that do not. 

The workflow for co-crystal prediction is a closed loop of database analysis, ML, optimisation, and 

experimentation. Two datasets were created starting with eight electron-rich PAHs with distinct 

Figure 6. Use of plDDT. 

Uniprot ID Q5VSL9 Uniprot ID Q96PD7 

https://www.alphafold.ebi.ac.uk/
https://github.com/deepmind/alphafold
https://alphafold.ebi.ac.uk/entry/Q5VSL9
file:///C:/Users/Wendy/Documents/RSC%20CICAG/AI4Chem21/uniprot%20ID%20Q96PD7


17 
 

geometry by carrying out similarity searches and removing molecules with H-bonding. The sets 

contained 1722 known molecular combinations from the Cambridge Structural Database (CSD) and 

21,736 possible ones from ZINC15, forming labelled (training) and unlabelled datasets respectively. 

Dragon descriptors were used as features of the two datasets. Each molecular pair was represented 

as a concatenation of the molecular descriptors. 

Most co‐crystal prediction research has focused on generating negative data for training binary 

classifiers. The current work, involving one-class classification, focuses only on the positive data and 

trying to define a reliable area where novel pairs can exist.69 The aim of Deep Support Vector Data 

Description (DeepSVDD) is to find a data-enclosing hypersphere of minimum size, such that the 

normal data points will be mapped near the centre of the hypersphere whereas anomalous data are 

mapped further away. The objective of DeepSVDD is to learn the network parameters and minimise 

the volume of the hypersphere. The deep learning protocol is a two-step process. The first (pre-

training) step uses a convolutional autoencoder to capture the representation of the data. During 

this step the centre of the hypersphere is calculated and is fixed as the mean of the network 

representations of the known data. During the second step, the latent dimension of the encoder is 

connected to a feed-forward NN to minimise the loss function (the distance from the centre of the 

hypersphere). In the Deep One Class method of Vriza et al. the convolutional autoencoder was 

substituted with a Set Transformer autoencoder which is capable of handling the order invariance of 

the molecular pairs. 

The algorithms implemented for one-class classification were separated into eight traditional ones 

and one NN. Vriza showed the overlapping score distribution of both the labelled and unlabelled 

data for all the algorithms. The unlabelled data consist of both positive and negative examples in an 

unknown proportion. Consequently, a certain part of the unlabelled data is expected to belong to 

the known class (i.e., are inliers). Moreover, in the labelled data there is a small proportion of 

examples that significantly differs from the rest of the data and is regarded as noise of the normal 

class (i.e., outlier examples). The impact of the class noise is mitigated using one class classification, 

as a proportion of the labelled data is regarded as outliers during the hyperparameter optimisation 

process. A clearer and more definite separation among the two different datasets can be observed 

for both the Ensemble and Deep One Class methods, with Deep One Class covering a bigger range of 

scores and thus enabling a better separation. 

Vriza showed learning curves of all the algorithms showing the performance of the models while the 

size of the training set increases. The validation metric used was the true positive rate (the number 

of correctly predicted inliers divided by the total size of the training set in each fold of the five-fold 

cross validation). The learning model outperforms the traditional algorithms as it has higher 

accuracy and low standard deviation. 

Scatterplots showing the distribution of representative descriptors among the molecular pairs on the 

labelled dataset indicate that the deep learning model can effectively learn the trends of the labelled 

data and is able to score the unlabelled data based on the significant patterns of the labelled data. 

Focusing on the highest‐ranking pairs predicted, the team tried to optimise the selection by 

targeting molecules with similarity to 7,7,8,8‐tetracyanoquinodimethane (TCNQ) which is extensively 

studied for its interesting electronic properties. Pyrene:benzochromenone (CSD: EHUFIZ) and 

pyrene:dicyanoanthracene (CSD: EHUFEV) were identified and experimentally validated, both 

https://www.ch.cam.ac.uk/computing/software/cambridge-structural-database-system
https://zinc.docking.org/
https://zinc.docking.org/
http://vcclab.org/lab/edragon/
https://github.com/lukasruff/Deep-SVDD
https://github.com/lukasruff/Deep-SVDD
http://proceedings.mlr.press/v97/lee19d/lee19d.pdf
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containing molecules which have not previously been reported as co‐formers in the CSD. These were 

two unlabelled inlier co-crystals lying in the densest area of the scatterplots regarding the polarity 

and electronic descriptors. Although shape, size and polarity are key factors, the rules that dominate 

co‐crystal formation are far more complex than just some general properties. 

The researchers then looked at molecular representations in Set Transformer and evaluated those 

using publicly available benchmarks. The representations were Mordred descriptors,70 RDKit Morgan 

fingerprints, graph embeddings (GNN fingerprints) and representations used in natural language 

processing (NLP) such as Molecular Transformer.60 Vriza et al. tuned the hyperparameters to reduce 

the reconstruction error and found that Morgan and GNN fingerprints performed best on all the 

validation data in terms of total accuracy (specificity, area under the receiver operating 

characteristic curve (ROC AUC) and recall). The two types of fingerprint also performed well in a 

head‐to‐head comparison on co‐crystal screening data for 18 active pharmaceutical ingredients. 

It has been said that there are some tasks for which there are simply not enough labelled data so we 

need to focus on ML methods that do not rely on labels. The applicability of the one class 

unsupervised approach to all CSD co‐crystals has been validated in real case scenarios. Currently 

there are several ML models for co‐crystal screening. The Liverpool team has provided a large 

amount of external validation data and carried out extensive testing against several methods. The 

workers focused on AI model development: permutation invariant neural networks, attention to 

extract relations, hyperparameter tuning and reconstruction error minimisation. They also tested 

several types of distinct inputs and found that Morgan and GNN fingerprints described the molecular 

pairs better than other inputs. 

PyPEF, an integrated framework for data‐driven protein design and 

engineering 
Niklas E. Siedhoff1, Alexander‐Maurice Illig1, Ulrich Schwaneberg,1,2 Mehdi D. Davari.3 (1) RWTH 

Aachen University, Aachen, Germany (2) DWI‐Leibniz Institute for Interactive Materials, Aachen, 

Germany (3) Leibniz Institute of Plant Biochemistry, Halle, Germany 

Davari’s group is interested in enzymes involved in catalysis in cells. Establishing protein sequence, 

structure, and function relationships is a grand challenge for experiment and computation. There 

has been progress on structure-sequence links, on design of sequences based on function, and on 

prediction of function based on sequences, but the dynamics linking structure to function is still a big 

challenge. 

Directed evolution (for which Frances H. Arnold won half a Nobel Prize in 2018) depends on 

generating a large gene library, needing lots of costly effort. Rational, computer-aided design 

techniques might never be able to sample through the entire protein sequence space and benefit 

from nature’s full potential for the generation of better enzymes. There is a clear trend to combine 

the rational design and directed evolution approaches. Semi-rational design generates small, 

functionally rich, mutant libraries using rationally pre-selected target sites. Knowledge-driven 

approaches navigate sequence space intelligently. Recently, machine learning methods have been 

increasingly applied to find patterns in data that help predict protein structures, improve enzyme 

stability, solubility, and function, predict substrate specificity, and guide rational protein design.71-74 

https://rdkit.org/
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In evolutionary biology, fitness landscapes are used to understand the relationship between 

genotypes and reproductive success. It is assumed that every genotype has a well-defined 

replication rate (fitness). This fitness is the “height” of the landscape. Genotypes which are similar 

are said to be close to each other, while those that are very different are far from each other. The 

set of all possible genotypes, their degree of similarity, and their related fitness values is then called 

a fitness landscape. The size of the protein sequence space is huge and the fitness landscape is 

complex. Current challenges are screening throughput (leading to limited exploration, information 

gaps and local maxima); the combinatorial problem of epistasis (a phenomenon in which the effect 

of a gene mutation is dependent on the presence or absence of mutations in one or more other 

genes); and cost and time. 

Combining next generation sequencing (high-throughput analysis of DNA and RNA sequences) with 

high throughput screening of 10
4
-10

8 
variants per day is a powerful strategy (deep mutational 

scanning) for comprehensively analysing sequence-function relationships.72 ML-guided directed 

evolution reduces experimental effort and mutates multiple positions simultaneously, combining 

directed evolution and rational design (Figure 7).71,73 

 

Pythonic Protein Engineering Framework (PyPEF, Figure 8) is a general‐purpose framework for data‐

driven protein engineering by combining machine learning methods (partial least squares (PLS), RF, 

support vector regression (SVR), and multilayer perceptron (MLP) based regression) with signal 

processing (fast Fourier transform, FFT) and statistical physics (Metropolis-Hastings algorithm) 

techniques.75 It assists in the identification and selection of beneficial proteins in the sequence space 

by either systematically or randomly exploring the fitness of protein variants and by sampling 

random evolution pathways. It applies featurisation by Fourier-transforming numerical indices, 

which represent physicochemical and biochemical properties for each amino acid, taken from the 

amino acid index (AAindex). 

Figure 7. ML-guided directed evolution. 

https://www.genome.jp/aaindex/
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The predictive accuracy and throughput performance of the framework was evaluated based on four 

publicly available datasets of proteins and enzymes and their properties, using common regression 

models. PyPEF learned on datasets of small-to-medium‐size, derived by diverse evolution strategies, 

and demonstrated potential to generate predictive models consistently, by accounting for either 

additive effects only (AAindex encoding and linear models) or non‐additive effects within the range 

of values learned during modelling (AAindex encoding and non-linear models) as well as both inside 

and outside the range of values learned during modelling, while providing effective in silico 

screening capabilities. 

The framework could efficiently predict the fitness of protein sequences for different target 

properties with R2 using PLS regression and FFT encodings ranging from 0.58 to 0.92. It enabled 

more than half a million protein sequences to be screened for various functions in only a few 

minutes on a standard PC. Data‐driven models generated by PyPEF with significant accuracies on 

four public datasets highlighted the potential for predicting the fitness of variants with high accuracy 

or capturing the general trend of introduced mutations on the fitness in directed protein evolution 

campaigns. PyPEF code is publicly available. 

Best practice for chemical language model de novo design of GPCR ligands: 

datasets, scoring functions and optimisation algorithms 
Morgan Thomas1, Noel M. O’Boyle2, David Araripe1, Rob T. Smith2, Chris de Graaf,2 Andreas Bender.1 

(1) University of Cambridge, UK (2) Sosei Heptares, Cambridge, UK 

There has been significant interest in de novo molecular design recently. Thomas discussed some 

aspects of the practical use of chemical language models (e.g., SMILES with recurrent neural 

networks) which are popular due to their simplicity, performance (by benchmarking works 

GuacaMol,52 Molecular Sets (MOSES),76 and Smina and Therapeutic Data Commons), code 

availability and support. Both structure-based and ligand-based design can be used. In the latter case 

prior ligand knowledge may not be available and if it is, it may bias molecule generation towards 

known chemotypes. Structural data are difficult to acquire (though they are increasingly available) 

Figure 8. PyPEF framework. 

https://github.com/Protein-Engineering-Framework/PyPEF
https://github.com/cieplinski-tobiasz/smina-docking-benchmark
https://github.com/cieplinski-tobiasz/smina-docking-benchmark
https://tdcommons.ai/benchmark/docking_group/drd3/
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but structure-based design is not biased by prior ligand knowledge. G Protein Coupled Receptors 

(GPCRs) are a particular target class where structural data can have a significant impact.77 

Thomas and his co-workers78 have assessed the use of molecular docking via Glide (a structure-

based approach) as a scoring function to guide the deep generative model REINVENT5,79 and 

compare model performance and behaviour to a ligand-based scoring function. The case study 

involved dopamine receptor D2 (DRD2). The approach taken is depicted in Figure 9, where data 

sources are coloured blue and scoring functions orange. The REINVENT framework (in grey) consists 

of two recurrent neural networks, a prior and an agent. The main steps in the current work are (1) 

removing known DRD2 active molecules from the ZINC training data; (2) training the prior model on 

druglike molecules from ZINC; (3) initializing the agents as a copy of the prior; (4) preparing the 

scoring functions to evaluate de novo molecules; (5) iteratively training both agents via 

reinforcement learning; and (6) evaluating the structure- and ligand-based approaches with respect 

to different quantitative, chemical and structural aspects of the generated molecules. 

 

The structure‐based approach improved uniqueness and molecular diversity during training, 

produced higher similarity to the training set and provided a greater coverage of known active 

ligands than the ligand‐based approach, despite having no prior ligand knowledge, as more clusters 

were shared between Glide-Agent and known actives than were shared between the SVM-Agent 

results and known actives. Glide-Agent generates high-scoring molecules that are more novel than 

the SVM-Agent ones and generates more novel areas of physicochemical space, consistent with the 

prior. Moreover, Glide-Agent learns to satisfy a crucial interaction with D1143x32 which is associated 

with better docking scores and is a prerequisite for experimental affinity.80 

Unfortunately, docking score optimisation is slow (each run takes about 1 week on about 30 CPUs) 

and it is system dependent. Can the computational expense associated with model optimization be 

minimised? The REINVENT loss function (augmented likelihood) includes a value sigma used to scale 

up the scoring function and lower the prior contribution.79 Comparison of REINVENT5 with REINVENT 

279 shows that sigma variation has a small effect on a short time scale. When rewards are sparse, 

loss drives agent back towards prior. This can be circumvented by using the hill-climb algorithm81 to 

focus learning on the best molecules. Thomas et al. found that a hybrid, augmented hill-climb, is 

more efficient at optimising docking score and is more sensitive to sigma values and hence more 

tunable. Augmented hill-climb has the propensity to undergo mode collapse (drop in uniqueness). 

Figure 9. Comparison of structure- and ligand-based scoring functions. 
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Mode collapse can be rescued by using a diversity filter (DF)3 to penalise non-unique or similar 

molecules. DF stabilises optimisation Augmented hill-climb plus DF is seven times more efficient 

than Glide-Agent in the original work on the short time scale, and up to 100 times more efficient on 

the long time scale whilst maintaining similar chemical behaviour, and runtime is reduced to about 

2-5 hours compared to one week on about 30 CPUs. 

DF would rescue mode collapse but it would not address the issue of generating unrealistic 

molecules. Benchmarking datasets are either too restrictive (as in the case of MOSES) or too broad 

(as in the case of GuacaMol) but the ChEMBLpotent subset of ChEMBL provides a dataset rich with 

druglike properties. SMILES outperforms alternative grammars in the prior dataset. Surprisingly, 

DeepSMILES82 suffer lower validity. SELFIES83 are more diverse but fewer of them pass standard 

druglikeness filters. SELFIES are least like the training set and the use of them results in many more 

“unusual” compounds. The prior dataset is still generating relatively featureless structures compared 

with risperidone (a DRD2 inverse agonist), regardless of the chemical grammar. 

Thomas’ final topic was the effect of scoring function protocol on failures of docking and of QSAR 

functions. We know, for example in DockStream,7 that different protocols lead to variable 

enrichment in docking and that adding constraints such as particular residue interactions increases 

performance84 and can outperform ML.85 It has been observed that ligand protonation is important 

in docking and that similar chemotypes can have inconsistent docked poses. There is also a trend for 

certain physicochemical properties to be violated. To study the effect of scoring function protocol, 

Thomas et al. chose MPO against Adenosine 2A (A2A).86,87 They analysed a diverse range of known 

chemotypes.88 They increased prior contribution by decreasing sigma from 60 to 30, protonated only 

the most likely states, and introduced a more difficult optimisation problem using constrained 

docking score, retrosynthetic accessibility score (RAscore),12 TPSA ≥ 40 and number of rotatable 

bonds ≤ 6. The added constraints worsen docking optimisation but improve molecule quality. The 

A2A MPO recovered more of, and a wider range of known A2A chemotypes.88 The added constraints 

avoid full occupation of the cavity. 

As for failures of QSAR functions, we know that generative models can overfit QSAR functions89 and 

that QSAR models with similar performance select different prospective candidates in virtual 

screening.90 Thomas et al. compared the molecules designed de novo for three targets using several 

different molecular representations, QSAR models and generative models. Both descriptor and QSAR 

method have a significant impact on generative model behaviour, such as molecular diversity and 

similarity to the training set. The vast majority of molecules are unique to a particular replicate and a 

particular method. The best way to incorporate synthesizability has not been considered. Work is 

ongoing on prospective validation, interaction fingerprints and alternative scoring functions. 

Machine learning models for predicting human in vivo PK parameters using 

chemical structure and dose 
Olga Obrezanova1, Filip Miljković2, Anton Martinsson2, Beth Williamson1, Martin Johnson1, Andy 

Sykes1, Andreas Bender1, Nigel Greene3 (1) AstraZeneca, Cambridge, UK (2) AstraZeneca, 

Gothenburg, Sweden (3) AstraZeneca, Waltham, MA, USA 

Animal and human pharmacokinetic (PK) data are routinely used in drug discovery to understand 

absorption, disposition, metabolism, and excretion (ADME) of candidate drugs. AstraZeneca has a 

https://www.ebi.ac.uk/chembl/
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suite of over 40 global ADME and safety models to guide virtual compound generation, enable 

compound selection and prioritisation, design compounds with good ADME and safety profiles, 

improve speed and efficiency in the DMTA cycle and reduce the number of in vitro experiments. The 

ultimate goal is to enable human PK prediction at the point of design.  

Prediction of rat PK is a stepping stone towards modelling human PK. An AI model predicts rat PK 

parameters from chemical structure and measured in vitro ADME properties. The chemical structure 

is encoded by a graph convolutional neural network (GCN). Properties used as input features are 

solubility, Caco2 (colorectal adenocarcinoma cell) intrinsic permeability and efflux, intrinsic 

clearance (CLint) in human liver microsomes (HLM), rat hepatocytes, intrinsic clearance and fraction 

unbound, and rat and human plasma protein binding (PPB). Properties predicted are clearance (CL), 

bioavailability (%F, the fraction of an oral administered drug that reaches systemic circulation), Cmax 

(the maximum serum concentration that a drug achieves in a specified test area of the body after 

the drug has been administrated and before the administration of a second dose), t1/2 (elimination 

half-life, the time required for the concentration of the drug in the plasma to reach half of its original 

value) and Vss (volume of distribution at steady-state). 

The method uses message passing NNs for molecular property prediction (“chemprop”) from the 

Machine Learning for Pharmaceutical Discovery and Synthesis (MLPDS) consortium, a collaboration 

between industry and the Massachusetts Institute of Technology. The rat PK model achieved good 

accuracy on key PK parameters (Table 2). CL was predicted within 2-fold error for 75% of compounds 

and within 3-fold for 90% of compounds. 

 

The use of in vitro in vivo extrapolation (IVIVe) from human hepatocyte and HLM stability assays, 

typically the “well stirred model” (WSM)91 is a widely accepted predictive methodology for human 

metabolic clearance. The rat PK CL prediction results were compared with those of WSM IVIVe. The 

in vivo rat CL model has higher accuracy (RMSE= 0.28, R2= 0.57 as opposed to RMSE= 0.43, R2= -0.11) 

and is not limited by liver blood flow (LBF). It provides insight into potential additional routes of 

elimination when compared to WSM (which is restricted by LBF). To test if predictions could be 

made for virtual compounds purely from chemical structure, the researchers went back to “old” in 

silico models for ADME properties for a training set. The test set was made by a 10% temporal split. 

RMSE results proved that the rat PK models are useful at the point of design. 

To build a human PK model,92 PK data were extracted from PharmaPendium and curated based on 

expert opinion. The final dataset contained 1001 SMILES and 4491 compound-dose combinations for 

12 PK parameters. For each compound−dose combination median values were calculated per PK 

parameter. Levels of data completeness for each PK parameter varied from 3.5% to 67%. The data 

are biased towards optimised compounds with good PK profiles. Doses covered a wide range. 

 R2 RMSE Experimental variability 

CL 0.57 0.28 0.18 

%F 0.48 0.72 0.55 

Vss 0.50 0.28 0.21 

 
RMSE = root mean square error 

Table 2. Rat PK model: test set performance. 

https://github.com/chemprop/chemprop
https://mlpds.mit.edu/
https://www.elsevier.com/solutions/pharmapendium-clinical-data
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Obrezanova et al. built on the rat PK model to predict human PK. The feature set consisted of dose, 

chemical structure, predicted in vitro ADME data and in vivo rat PK data. Random forest was used as 

modelling technique. The split into validation and test sets was random by compound with dose 

stratification. Varying data distributions and data availability had an impact on the ability to model 

endpoints. Three endpoints had satisfactory models: oral area under the plasma time−concentration 

curve (AUC PO, R2
test= 0.63; RMSEtest = 0.76), maximum plasma drug concentration per oral (Cmax PO, 

R2
test = 0.68; RMSEtest = 0.62), and volume of distribution intravenous (Vd IV, R2

test = 0.47; RMSEtest = 

0.50).92 Dose is one of the most important features to model AUC PO and Cmax PO. Predictions of in 

vivo rat PK parameters and in vitro ADME properties are also important. 

Performance of the models was additionally investigated using an internal AstraZeneca compendium 

of first-time-in-human measurements in the 2000−2020 period.93 In addition, drug metabolism and 

pharmacokinetics (DMPK) prediction values are provided allowing for a side-by-side performance 

comparison with machine learning models. Despite the different sample sizes and chemical 

composition of the hold-out test set and internal clinical candidates, the model performance was 

comparable for both datasets. The accuracy of the ML models was lower than that of pre-clinical 

prediction (DMPK). Nevertheless, the ML models are fit-for-purpose to be used in early drug 

discovery and are complementary to current pre-clinical predictions. 

The in vivo rat and human PK models increase the efficiency of the DMTA cycle allowing scientists to 

design compounds with better safety and PK properties early in the drug discovery process. The 

models can drive prioritisation for in vivo testing and reduction in animal experiments and guide de 

novo generative models to build in good PK. They can also inform safety-related models of the 

therapeutic window: predicted human Cmax can be used to enable safety risk assessment at earlier 

stages. In future Obrezanova and her colleagues will expand the in-house and commercial datasets, 

use dog and rat PK models built on larger datasets to improve the human model, and explore 

transfer learning and multitask learning deep learning architectures. 
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